Landis' conjecture for general second order elliptic equations with singular lower order terms in the plane
نویسندگان
چکیده
منابع مشابه
Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations
In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems
متن کاملQuantitative uniqueness estimates for the general second order elliptic equations
In this paper we study quantitative uniqueness estimates of solutions to general second order elliptic equations with magnetic and electric potentials. We derive lower bounds of decay rate at infinity for any nontrivial solution under some general assumptions. The lower bounds depend on asymptotic behaviors of magnetic and electric potentials. The proof is carried out by the Carleman method and...
متن کاملNumerical solution of second-order elliptic equations on plane domains
— The paper présents a gênerai discretization method for convective diffusion équations. The schemes are hased on an intégral formula and have the following advantages : 1. They are effective particularly in the case when convection is dominated ; 2. Solutions obtained by them satisfy a discrete conservation law ; 3. A discrete maximum principle is valid. We show that the fïnite element solutio...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملSingular Sets of Higher Order Elliptic Equations
The implicit function theorem implies that the zero set of a smooth function, the set where the function vanishes, is a smooth hypersurface away from the critical zero set. Hence to study zero sets it is important to understand the structure of the critical zero sets. For solutions of the second order elliptic equations the critical zero sets represent the singular parts of zero sets. They have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2020
ISSN: 0022-0396
DOI: 10.1016/j.jde.2019.08.035